ȸ¿ø°¡ÀÔ | ¿¬¶ôó | »çÀÌÆ®¸Ê | English

      È¸»ç¼Ò°³ | ¸®Æ÷Æ® | Ä¿½ºÅÒ ¸®¼­Ä¡ | °í°´Áö¿ø


·Î±×ÀÎ

Ä«Å×°í¸®

À¯/¹«¼±Åë½Å

Àü±â/ÀüÀÚ

µðÁöÅбâ±â/¹Ìµð¾î/¹æ¼Û

Information Technology

¿¡³ÊÁö

»ý¸í°øÇÐ

È­ÇÐ/½Å¼ÒÀç

ÀÚµ¿Â÷

ȯ°æ

ÀϹݼҺñÀç

¸¶ÄÉÆÃ/±¤°í

±ÝÀ¶

°Ç¼³

±³Åë/¿î¼Û

¼ÒºñÀÚÁ¶»ç

¹æÀ§/Ç×°ø/¿ìÁÖ

½ÄÀ½·á

Áß°ø¾÷

±³À°

±â°è

¹«¿ª

½ºÆ÷Ã÷/·¹Àú

ÇØ¿î/Á¶¼±

ÆмÇ

Á¤ºÎ/Á¤Ã¥

°ø¿¹/±Í±Ý¼Ó

ÄÄÆÛ´Ï ÇÁ·ÎÆÄÀÏ

±âŸ»ê¾÷

 
ÇöÀçÀ§Ä¡ : HOME > ¸®Æ÷Æ® > À¯/¹«¼±Åë½Å > ¹«¼±Åë½Å
The Public Safety LTE & 5G Market: 2020 – 2030 – Opportunities, Challenges, Strategies & Forecasts
¹ßÇà»ç SNS Telecom & IT

¹ßÇàÀÏ 2020-05
ºÐ·® 1682 pages
¼­ºñ½ºÇüÅ Report
ÆǸŰ¡°Ý

ÀμâÇϱâ

Synopsis

With the standardization of MCX (Mission-Critical PTT, Video & Data), IOPS (Isolated Operation for Public Safety), HPUE (High-Power User Equipment) and other critical communications features by the 3GPP, LTE and 5G NR (New Radio) networks are increasingly gaining recognition as an all-inclusive public safety communications platform for the delivery of real-time video, high-resolution imagery, multimedia messaging, mobile office/field data applications, location services and mapping, situational awareness, unmanned asset control and other broadband capabilities, as well as MCPTT (Mission-Critical PTT) voice and narrowband data services provided by traditional LMR (Land Mobile Radio) systems.

A myriad of dedicated, hybrid commercial-private and MVNO-based public safety LTE and 5G-ready networks are operational or in the process of being rolled out throughout the globe. In addition to the high-profile FirstNet, South Korea¡¯s Safe-Net and Britain¡¯s ESN nationwide public safety broadband projects, many additional national-level engagements have recently come to light – most notably, the Royal Thai Police¡¯s LTE network which is already operational in the greater Bangkok region, Finland's VIRVE 2.0 mission-critical mobile broadband service, France's PCSTORM critical communications broadband project, and Russia's secure 450 MHz LTE network for police forces, emergency services and the national guard.

Other operational and pilot deployments range from nationwide systems in the oil-rich GCC (Gulf Cooperation Council) region to local and city-level private LTE networks for first responders in markets as diverse as Canada, China, Laos, Indonesia, the Philippines, Pakistan, Lebanon, Egypt, Kenya, Ghana, Cote D'Ivoire, Cameroon, Mali, Madagascar, Mauritius, Canary Islands, Spain, Italy, Serbia, Argentina, Brazil, Colombia, Venezuela, Bolivia, Ecuador and Trinidad & Tobago, as well as multi-domain critical communications broadband networks such as Nordic Telecom in the Czech Republic and MRC's (Mobile Radio Center) LTE-based advanced MCA digital radio system in Japan, and secure MVNO platforms in countries including but not limited to Mexico, Belgium, Switzerland, the Netherlands, Sweden, Slovenia and Estonia.

In addition, even though critical public safety-related 5G NR capabilities are yet to be standardized as part of the 3GPP's Release 17 specifications, public safety agencies have already begun experimenting with 5G for applications that can benefit from the technology's high-bandwidth and low-latency characteristics. For example, New Zealand Police are utilizing mobile operator Vodafone's 5G NR network to share real-time UHD (Ultra High Definition) video feeds from cellular-equipped drones and police cruisers with officers on the ground and command posts. In the near future, we also expect to see rollouts of localized 5G NR systems for incident scene management and related use cases, potentially using up to 50 MHz of Band n79 spectrum in the 4.9 GHz frequency range (4,940-4,990 MHz) which has been designated for public safety use in multiple countries including but not limited to the United States, Canada, Australia, Malaysia and Qatar.

SNS Telecom & IT estimates that annual investments in public safety LTE/5G-ready infrastructure will surpass $2 Billion by the end of 2020, predominantly driven by new build-outs and the expansion of existing dedicated and hybrid commercial-private networks in a variety of licensed bands across 420/450 MHz, 700 MHz, 800 MHz, 1.4 GHz and higher frequencies, in addition to secure MVNO networks for critical communications. Complemented by a rapidly expanding ecosystem of public safety-grade LTE/5G devices, the market will further grow at a CAGR of approximately 10% between 2020 and 2023, eventually accounting for more than $3 Billion by the end of 2023.

The ¡°Public Safety LTE & 5G Market: 2020 – 2030 – Opportunities, Challenges, Strategies & Forecasts¡± report presents an in-depth assessment of the public safety LTE/5G market including market drivers, challenges, enabling technologies, application scenarios, use cases, operational models, key trends, standardization, spectrum availability/allocation, regulatory landscape, case studies, opportunities, future roadmap, value chain, ecosystem player profiles and strategies. The report also presents global and regional market size forecasts from 2020 till 2030, covering public safety LTE/5G infrastructure, terminal equipment, applications, systems integration and management solutions, as well as subscriptions and service revenue.

The report comes with an associated Excel datasheet suite covering quantitative data from all numeric forecasts presented in the report, as well as a list and associated details of over 500 global public safety LTE/5G engagements – as of Q2¡¯2020.


ȸ»ç¼Ò°³ | °³ÀÎÁ¤º¸º¸È£Á¤Ã¥ | ÀÌ¿ë¾à°ü | ¹è¼Û/°áÁ¦¾È³» | ÀÌ¿ë¾È³»

¼­¿ï½Ã °­³²±¸ ³íÇöµ¿ 210-1 »ï¿øºôµù | ȸ»ç¸í : (ÁÖ)¿¤¾Ø¿¡Ä¡
´ëÇ¥ÀüÈ­ : 02-554-0001 / Æѽº : 02-3444-5501 / À̸ÞÀÏ : sales@landh.co.kr
Copyright ¨Ï 2008 LNH, Inc. All rights reserved.